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ON THE COMMUTATIVITY OF PRIME RINGS USING
SOME DIFFERENTIAL IDENTITIES
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ABSTRACT. Many research have been conducted to investigate the com-
mutativity of prime rings utilizing some functional identities assertions,
which shows that functional identities has a significant impact on the ring
structures. Using certain differential identities, we extend the literature to
demonstrate that prime rings that admit some generalized semi-derivations
are integral domains.

2010 MATHEMATICS SUBJECT CLASSIFICATION. 17A36, 13N15.

KEYWORDS AND PHRASES. derivations, generalized derivations, semi-derivations,
generalized semi-derivations, prime ring, integral domain.

1. INTRODUCTION

Rings considered in this paper are associative and not necessarily unitary.
We shall denote by Z(R) the center of a ring R. Anideal P of R is a prime ideal
if tRy C Pyields x € P ory € P. In particular, if the zero ideal of R is prime,
then R is said to be a prime ring. For any z,y € R, we will write [z, y] = zy—yz
and x oy = xy + yz for the Lie product and Jordan product, respectively. An
additive mapping d : R — R is a derwation if d(zy) = d(z)y + zd(y) for
all z, y € R. An additive mapping F' : R — R is a generalized derivation
associated to a derivation d if F(vy) = F(2)y + xd(y) for all z, y € R.
When it comes to inferring a derivation map associated with a given ring
function, an additive mapping f : R — R is a semi-derivation associated
with an epimorphism g, if f(zy) = f(2)g(y) + zf(y) = f(2)y + g(x) f(y) with
d(g(x)) = g(d(z)) for all z, y € R.

Combining the two previous definitions, one can be able to present the
next derivation map. An additive mapping I’ on a ring R associated with a
semi-derivation f and an epimorphism g, for which F(g(z)) = g(F(z)) and
F(zy) = F(x)y + g(z)f(y) = F(x)g(y) + xf(y), for all x, y € R, is called a
generalized semi-derivation.

Several innovations in literature reveal on how the behavior of some additive
mappings on a prime ring effects on the structure of such rings. Many of the
achieved findings expand the earlier ones to show the impact of the considered
additive mappings on the entire ring, see [3, 4, 5, 6].

The second theorem of Posner stated that, a prime ring is commutative if it
admits a nonzero centralizing derivation [7]. Considering such theorem from a
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distance, it is unclear what motivated Posner to prove it and for what argument
he has been willing to consider that the theorem is valid. Certainly, Posner’s
theorem achieved a huge impact, and it has helped to launch a number of
concepts. The most broad and significant of these is the concept of functional
identity.

There is certainly a lot of interest in investigating the commutativity of
rings, particularly the class of prime (semi-prime) rings. The current article
will go over some assumptions on a selective additive mapping on prime rings
which provides the commutativity of such ring. The selective additive mapping
in this article is the generalized semi-derivation.

2. PRIME RINGS ADMITTING GENERALIZED SEMI-DERIVATION

In the current section, (F, f , ) for a given ring R denotes a generalized semi-
derivation F': R — R associated with a semi-derivation f and an epimorphism
f.

In [1], Ashraf et al. showed that a prime ring R is commutative correspond-
ing to a non-zero ideal I of R, if R admits a generalized derivation F' associated
with a non-zero derivation d, such that F(zy) + zy € Z(R), for all z, y € I.
We will demonstrate the commutativity of prime rings under other derivation
identities using the next theorem.

Theorem 2.1. Let R be a prime ring and (F, f, f) be a nonzero generalized
semi-derivation of a prime ring R, such that F(x)oy € Z(R) for allx, y € R.
Then R is an integral domain.

Proof. By assumption
(1) [F(z)oy,r] =0, for all r,z,y € R.
Changing y by ry in (1), we get
(2) r[F(z)oy,r]+ [[F(z),r],r]y+ [F(z),r]ly,r] =0, for all 7,2,y € R.
In view of (1), equation (2) reduces to
(3) [[F(z),7],r]y + [F(z),r][ly,r] =0, for all 7, z,y € R.
Replacing y by yF'(x) in (3), one can verify that
[F(z),r|R[F(x),r] =0, for all r,z € R.
Invoking the primeness of R, we obtain
(4) [F(x),r] =0, for all r,z € R.
On the other hand, writing xy for = in (4), it follows that
(5)  F@)y, ]+ f@)[f (). r] + [f(@),7]f(y) = 0, for all r,z,y € R.
Putting F'(z) instead of x in (5), we find that

(6) F2(2)[y.r] + F(f(@)[f(y),r] =0, for all 2,y € R.
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Taking y = r in (6), we may write
(7) F(f(x))[f(r),7] =0, for all r,z € R.

Let f(y) instead of r and f(z) instead of z in (5) and using equation (7), it
follows that

(8) [F2(z), f(r)]f(r) =0, for all 7,z € R.

Since f is an epimorphism, we obviously get

(9) [z, f(r)]f(r) =0, for all r,z € R,

which proves that

(10) [z, f(r)]R[z, f(r)] =0, for all r,z € R.

We conclude that f(R) C Z(R), then relation (5) reduces to
F(x)[y,r] + [f(z),r]f(y) = 0 for all r,z,y € R.

In this case, taking y = r in the latter equation, we acquire

(11) [z,7]f(r) =0, for all r,x € R.

Substituting xt for x in (11), we result

(12) [z,7]Rf(r) =0, for all r,z € R.

Therefore, R is commutative or f = 0 which implies from equation (5) that
F =0, a contradiction. O

Corollary 2.2. Let R be a prime ring and F be a nonzero generalized deriva-
tion of R associated with a derivation f, such that F(x) oy € Z(R) for all
x,y € R. Then, R is an integral domain.

Theorem 2.3. Let R be a prime ring and (F, 1, f) be a nonzero generalized
semi-derivation on R. The following assertions are equivalent:

(1) [F(z),y] € Z(R), for all x,y € R.
(2) R is an integral domain.

Proof. For the non trivial implication, we have that
(13) [[F(z),y],r] =0, for all r,z,y € R.
Changing y by ry in (13), we get
(14) r[[F(z),y),r] + [[F(z),r],r]y + [F(2),r][y,r] =0, for all r,z,y € R.
In view of (13), equation (14) reduces to
(15) [F(z),r]ly,r] =0, for all r,z,y € R.
Replacing y by yF'(x) in (15), one can verify that
[F(z),r|R[F(x),r] =0, for all r,z € R.
Invoking the primeness of R, we obtain
(16) [F(x),r] =0, forall r,z € R.
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On the other hand, writing xy for = in (16), we get

(17)  F@)ly,r]+ f@)f ()] + (@), r]f(y) =0, for all r,z,y € R.
Putting F(x) instead of x in (17), we find that

(18) F2(x)[y, ] + F(f(z)[f(y),7] =0, for all r,z,y € R.
Taking y = r in (18), we may write
(19) F(f(x)[f(r),r] =0, for all 7,z € R.

Let f(y) instead of r and f(z) instead of z in (17) and using equation (19), it
follows that

(20) [f2(x), f(")]f(r) =0, for all v,z € R.

Since f is an epimorphism, we obviously get

(21) [z, f(r)]f(r) =0, for all r,z € R,

which proves that

(22) [z, f(r)|R[z, f(r)] =0, for all r,z € R.

We conclude that f(R) C Z(R), then relation (17) reduces to
F(z)[y,r] + [f(z),7]f(y) =0, for all r,z,y € R.

In this case, taking y = r in the latter equation, we acquire

(23) [z,7]f(r) =0, for all r,x € R.

Substituting xt for x in (23), we result

(24) [z,7]Rf(r) =0, for all r,z € R.

Therefore, R is commutative or f = 0 which implies from equation (17) that
F' =0, a contradiction. O

Corollary 2.4. Let R be a prime ring and F' be a nonzero generalized deriva-
tion of a prime ring R associated with a deriation f, such that [F(x),y] €
Z(R) for all x,y € R. Then, R is an integral domain.

Theorem 2.5. Let R be a prime ring, (F, f, f) and (G, §,g) two generalized
semi-deriwations of R. If F(x)G(y) € Z(R) for all x,y € R, then one of the
following claims is valid:
(1) F=0 orG=0.
(2) There exist A, N € C and two additive mappings p, i’ : R — C such
that F(x) = Az + p(x) and G(z) = Na + i/ (z).
(3) R is an integral domain.

Proof. By hypothesis, we have

(25) F(z)G(y) € Z(R), for all z,y € R.
Replacing y by yr in (25), we get

(26) F(x)G(y)g(r) + F(x)yg(r) € Z(R), for all r,z,y € R.
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Commuting the above relation with g(r), we obtain
(27) [F(x)yg(r),g(r)] =0, for all r,z,y € R.
Substituting xs for x in (27), we find that

(28)  [F(2)f(s)yg(r), 3(r)] + [wf(s)yg(r), §(r)] = 0, for all v, 5,2,y € R.
Putting f(s)y for y in (27) and subtracting from (28), we arrive at

(29) [zf(s)yg(r),g(r)] =0, for all r,s,z,y € R.

Writing tx for x in (29) and using it, one can see that

(30) [t,g(r)]xf(s)yg(r) =0, for all r;s,t,x,y € R.

Then R = Ry U Ry with Ry = {r € R|[t,g(r)] = 0} and Ry = {r €

R| f(s)yg(r) = 0}. Using Brauer’s trick, we have R = Ry or R = Rs.
If R= Ry, i e g(R) C Z(R), then equation (26) becomes

(31) [F(x)yg(r),s] =0, for all r,s,z,y € R.

Writing yg(r) for y in (31), one is able to verify that

(32) F(z)yg(r)g(r),s] =0, for all r,s,x,y € R.

Substituting ts for s in (32), it follows that

(33) F(z)yg(r)tlg(r),s] =0, for all r;s,t,z,y € R.

Simple computations lead to

(34) F(x)ylg(r), slt[g(r), s] =0, for all r,s,t,z,y € R.

Applying the primeness of R, we find that F'(R) = 0 or g(R) C Z(R). However,
the second case together with equation (31) leads to the first case or g(R) =0
or R is commutative.

Now if R = R, then we get f(R) = 0 or g(R) = 0. Suppose that f = 0,
then putting *G(y) for = in our assumption, we get

F(x)G(y)[G(y),s] =0, for all s,z,y € R,
implies that
F(z)R[G(y), s|R[G(y),s] =0, for all s,z,y € R.
Therefore, F(R) = 0 or G(R) C Z(R). In the second case, using the hypothesis

we get F(R) C Z(R) or G(R) = 0. Now if [F(z),z] =0 and [G(x),z] = 0 for
all z € R, then by ([2], Theorem 3.2) we obtain the required results. O

Corollary 2.6. Let (F, 1, f) be a nonzero generalized semi-derivation of a
prime ring R. If F(x) F(y) € Z(R), for all x, y € R. Then one of the
following claims is valid:

(1) F(z) = Ax + p(x), for A€ C and p: R — C.

(2) R is an integral domain.
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Theorem 2.7. Let R be a prime ring and (F, f, f) be a generalized semi-
derivation on R associated to a nonzero deriwation f, such that f(Z(R)) # 0.
Then, the following assertions are equivalent:

(1) [F(x), f(y)] € Z(R), for all x,y € R.
(2) R is an integral domain.

Proof. For the non trivial implication, suppose that Z(R) = (0), then the main
equation reduces to

(35) [F(z), f(y)] =0, for all z,y € R.

Taking yf(r) instead of y in (35), with r € R, we get

(36)  SWIF(@). f(f()] + [F(2),yf*(r)] =0, for all 2,y € R.
Using (35), equation (36) becomes

(37) [F(z),yf*(r)] =0, for all 7,2,y € R.

Accordingly
[F(x),y]Rf*(r) =0, for all 7,2,y € R.
Invoking the primeness of R, we get either [F(R), R] = (0) or f*(R) = (0). In
light of Theorem 2.3, the first case implies that R is an integral domain.
Now, if

(38) f2(r) =0, forallr € R.
Replacing r by rs, with s € R, we get
F(f)f(s) +7f(s)) =0, for all r,s € R.
That is
FA) () + £V () + £ F() + F(1)f2(s) = 0, for all v, € R
In light of equation (38), we get
(39) f(r)f(s+ f(s)) =0, for all r,s € R.
Using the fact that id + f is surjective, we obtain
f(r)f(x) =0 forall r,x € R.
Replacing r by ry, with y € R, we get
Fr)yf(@) + f(r)f(y)f(x) =0 for all r,z € R.
Thus
f(r)Rf(x) =0 forall r,x € R,
then f =0, a contradiction.
Now if Z(R) # (0), we have that f(Z(R)) # 0 along with
(40) [F(z), f(y)] € Z(R), for all z,y € R.

Replacing y by yz, with z € Z(R)\{0} and f(z) # 0, we get

[F(2), f(y)]= + [F(@), F)lf (=) € Z(R), for all 2,y € R.
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That is

(41) [F(z), f(y)] € Z(R), for all z,y € R.

Taking zz instead of x in (40), with z € Z(R)\{0} and f(z) # 0, we obtain
(42) [F(x), f(y))z + [[ (@), FIf () € Z(R)

(43)  [Fa), [ (2) + F@)[f(2), f ()] + [z, f )] f(z) € Z(R)
for all z,y € R.

Relation (42) reduces to [f(z), f(y)] € Z(R), for all z,y € R, commuting
equation (43) with f(z), we obtain

[[x, f(y)},f(z)] =0 forall z,y € R.
Substituting f(y)z for x, we find that

Lf (), JE(Z)]R[x, f(y)] =0 forall z,y € R.

Invoking Brauer trick, we get either [f(y), f(z)] = 0 or [z, f(y)] = 0, for all
x,y € R. The second case along with Theorem 2.3 give the commutativity of
R. Suppose that

[F(v), f(z)] =0, forall .y € R.
Then expression (43) reduces to

(44) [F(2), f(9)) ] (2) + [2. J@))f (2) € Z(R), for all w,y € R.

In particular for z = f(z)

[F(F(2)): fW)f(2) € Z(R), forall y € R
Hence f(z) € Z(R). Then equation (44) reduces to
[z, f(y)] € Z(R), for all z,y € R.

Invoking Theorem 2.3, we get R is commutative. (]
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